Understanding the Impact of Inter-Lens and Temporal Stereoscopic Video Compression

Wu-chi Feng, Feng Liu
Intel Systems and Networking Lab
Portland State University
Motivation

- 3D (stereo) video is here
Problems

- Experience is highly view dependent

- Mismatch between depths on converged image and edges that are supposed to be at the same depth
Problems

- Experience is highly view dependent
- Mismatch between depths on converged image and edges that are supposed to be at the same depth
Problems

- Experience is highly view dependent
- Mismatch between depths on converged image and edges that are supposed to be at the same depth
- Eyes need to actively track over time
Observations

- Producers of 3D content have certain depth and presentation in mind
 - Need to be able to tailor display with these intents in mind

- View scenarios can be highly varied
 - Handheld – 18” away
 - iPhone
 - Tablet
 - Displays
 - 52” TV, 10-12 feet away
 - 30” display, 18” away
The future

- Multi-headed stereoscopic cameras
Systems support for multi-lens

- **The process**
 - Capture image-sets of data
 - Calculate disparity (for use in display)
 - Compress

- **The questions**
 - Can you leverage disparity calculation in motion search?
 - What is the best way to compress the video?
Related work

- MVC Encoding
 - Generic multiview video codec
 - Main focus is compression efficiency
Temporal Compression

Inter-lens Compression
The sequences
Inter-lens compression

![Graph 1: Motion Vector (Pixels) vs. Percentage for Cpass-11x, Drive-11x, and Pier-11x]

![Graph 2: Motion Vector (Pixels) vs. Percentage for Cpass-11y, Drive-11y, and Pier-11y]
Inter-lens compression

<table>
<thead>
<tr>
<th>Movie</th>
<th>Skip</th>
<th>Intra</th>
<th>Zero</th>
<th>Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpass</td>
<td>11.5%</td>
<td>0.22%</td>
<td>36.94%</td>
<td>51.33%</td>
</tr>
<tr>
<td>Drive</td>
<td>6.73%</td>
<td>0.79%</td>
<td>41.12%</td>
<td>51.36%</td>
</tr>
<tr>
<td>Pier</td>
<td>25.34%</td>
<td>2.17%</td>
<td>5.40%</td>
<td>67.10%</td>
</tr>
</tbody>
</table>
Temporal compression

![Graphs showing temporal compression data for different motion vectors with labels Cpass-11x, Drive-11x, Pier-11x.](image)
Inter-lens compression

<table>
<thead>
<tr>
<th>Movie</th>
<th>Skip</th>
<th>Intra</th>
<th>Zero</th>
<th>Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpass</td>
<td>52.31%</td>
<td>0%</td>
<td>34.46%</td>
<td>13.22%</td>
</tr>
<tr>
<td>Drive</td>
<td>17.8%</td>
<td>2.87%</td>
<td>20.32%</td>
<td>59.01%</td>
</tr>
<tr>
<td>Pier</td>
<td>55.44%</td>
<td>0.33%</td>
<td>23.17%</td>
<td>21.07%</td>
</tr>
</tbody>
</table>
Inter-lens compression

<table>
<thead>
<tr>
<th>Movie</th>
<th>Skip</th>
<th>Intra</th>
<th>Zero</th>
<th>Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpass</td>
<td>52.31%</td>
<td>0%</td>
<td>34.46%</td>
<td>13.22%</td>
</tr>
<tr>
<td>Drive</td>
<td>17.8%</td>
<td>2.87%</td>
<td>20.32%</td>
<td>59.01%</td>
</tr>
<tr>
<td>Pier</td>
<td>55.44%</td>
<td>0.33%</td>
<td>23.17%</td>
<td>21.07%</td>
</tr>
</tbody>
</table>
Conclusion

- We believe multi-lens stereoscopic will be the future

- Lots of work
 - Temporal compression is still king particularly for still camera images
 - Inter-lens compression shows promise for more dynamic video motion
 - May change with more densely space lens
Questions?